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ABSTRACT 
 
 
Spectral imagery provides a new resource in remote sensing, which can be used for 

defeating camouflage, concealment and detection, as well as terrain categorization. A new 
sensor, the Night Vision Imaging Spectrometer (NVIS), provides VNIR/SWIR (0.4-2.5 
µ) spectra, which are used to here to study such applications. NVIS has a nominal GSD of 
0.5-1.5 meters 'in operational modes utilized for this work, which make the data well 
suited for studying mapping and classification algorithms. Data taken at Ft. A.P. Hill on 
April 29, 2000 are studied here. 

A Principal Components Transformation was performed on the NVIS data. From 
this new data set, target spectra were collected for use in classification algorithms. The 
NVIS data was converted from radiance to reflectance in two different ways: Empirical 
Line Method and Internal Average Relative Reflectance. Using this data, various standard 
algorithms were performed. It was found that while none of the algorithms correctly 
classified all of the selected targets, the Mahalanobis Distance and Mixture Tuned 
Matched Filter algorithms were the most successful.  
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I. INTRODUCTION 
 
 
 
Spectral imagery is a tool in remote sensing which offers new support for military 

operations.  Potential applications include Terrain Categorization (TERCAT), finding threat 

vehicles, and defeating enemy camouflage, concealment and detection (CCD). 

Traditional approaches to TERCAT use the multi-spectral (MSI) systems such as the 

LANDSAT systems, dating back to 1972 (Lillesand, 1994).  Over the last decade, new hyper-

spectral (HSI) systems have emerged which offer the promise of greater ability to distinguish 

surface materials, including soil types.  In particular, HSI systems offer great promise in areas 

such as littoral warfare, addressing issues such as trafficability. 

Spectral imagery can be used to distinguish manmade and natural materials.  As 

camouflage sophistication increases, the need for more discriminatory detectors increases.  HSI 

offers great promise in defeating CCD because it can exploit spectral differences between 

naturally occurring materials and manmade. 

Because of the obvious advantages of HSI over other methods of remote sensing, there 

is much interest in developing HSI detectors for use by the Defense Department.  This interest 

spurred the creation of the Night Vision Imaging Spectrometer (NVIS).  This airborne, Very 

Near Infrared/Short Wave Infrared (VNIR/SWIR) system is operated by the US Army Night 

Vision Lab in order to study the exploitation of spectral imagery.   This thesis will present an 

assessment of NVIS and its capability to provide support to military operations (SMO).  This 

thesis intends to use data from the airborne NVIS sensor to determine its capability to: 
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• Find Threat Vehicles and defeat Camouflage, Concealment, and Deception 

(CCD) efforts 

• Categorize Terrain Features (MHS:Interim Progress Report, 1995). 

A variety of standard algorithms will be used to study these topics.  The tool used here 

is the Environment for Visualizing Information (ENVI), a commercial product from Research 

Systems Incorporated (RSI). 

Chapter II of this thesis will provide a description of remote sensing, HSI, and the 

theoretical basis for HSI.  Chapter III will describe NVIS itself, providing background on its 

development and its construction and operation.  The tools and algorithms for the classification 

of the data acquired by NVIS will be discussed in Chapter IV.  Spectral analysis of the NVIS 

data will be performed in Chapter V.  Summary of results and conclusions will be presented in 

Chapter VI. 
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II. HYPERSPECTRAL IMAGING THEORY 
 
 
 

A. REMOTE SENSING 

1. Background 

Remote sensing is the science of obtaining information about something, be it an object 

or a scene, through analyzing data obtained by a device that is not in contact with the subject 

under investigation. (Lillesand, 1994)  The information that the sensor collects from the subject 

is in the form of electromagnetic radiation.  This radiation can be visible light emitted by the 

Sun and reflected to the sensor, thermal radiation emitted by the subject, or radiation emitted 

from the detector platform itself to illuminate and reflect back from the subject.  Depending on 

the subject and the environment through which the detector is sensing, any region of the 

electromagnetic spectrum can be sensed to gather information. 

Some information can be gathered about a subject by collecting information at a single 

wavelength, or integrated over a portion of the spectrum.  An example would be scene 

brightness as measured in simple black and white photography.  However, from the inception 

of color photography in the 1930s (Elachi, 1987), it was noted that more information could be 

derived about a subject if data are acquired at more than one wavelength simultaneously.  Most 

early sensors worked in the VNIR portion of the spectrum, exploiting silicon technology, in 

particular the early LANDSAT sensors.  Parallel efforts in the thermal IR emerged later, as 

with TIMS. 
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2. Electromagnetic Spectrum 

The electromagnetic spectrum (figure 2.1) is divided into a number of spectral regions.  

The different regions can be used to varying degrees in the field of remote sensing, in that from 

the different regions one can deduce different things about what is being sensed.  Of particular 

note are those regions that offer penetration through the Earth’s atmosphere and do not 

require an artificial source of illumination. 

 

Fig. 2.1 Electromagnetic Spectrum (From Sabins, 1978) 
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The portion of the electromagnetic spectrum most used in spectral remote sensing 

ranges from 0.4 µm to 14.0 µm.  This region is graphically depicted in figure 2.2. 

 

Fig. 2.2 Characteristics of Spectral Regions. (From Multispectral Users Guide, 1995) 
 

Sensors that operate from 0.4 µm to 3.0 µm take advantage of the Sun’s illumination, 

for this region is where solar radiation is dominant.  From 3.0 µm to 8.0 µm, both solar 

illumination and thermal self-emission contribute and must be accounted for.  From 8.0 µm to 

14.0 µm, the self-emission of thermal energy by the subject is the most dominant feature.  For 

the purposes of this thesis, the region referred to as the reflective spectrum, from 0.38 to 3.0 
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µm (Campbell, 1996) will be discussed in some depth.  The lower bound is chosen because 

below 0.38 µm (ultra-violet), ozone absorbs solar emission. 

 

3. Generation and Emission of Electromagnetic Radiation 

Electromagnetic radiation is generated by the conversion of energy from other forms, 

such as kinetic, chemical, or nuclear. (Elachi, 1987)  The energy of the radiation being 

generated depends on the efficiency of the conversion process.  

Higher frequency waves in the infrared and visible regions of the electromagnetic 

spectrum are generated by molecular excitation (vibrational or orbital) followed by decay from 

the excited state.  Because energy is conserved, the energy released is equal to the energy 

difference between the two states. 

Any object that is not in thermal equilibrium with its surroundings will undergo a 

transfer of energy between the object and its environment.  This energy will be emitted by 

means of conduction, convection, and/or radiation.  For the Sun radiation is the mechanism 

that is important. 

An ideal source, also known as a black body, emits the maximum amount of heat 

energy in the form of radiation into its environment.  The spectral emittance of a black body is 

described by Planck’s Formula as: 

   
2

5

2 1
( )

1
hc

kT

hc
S

e λ

π
λ

λ
=

−
   (2-1) 
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where k is the Boltzman constant, h is Planck’s constant, c is the speed of light, λ is the 

wavelength, and T is the absolute temperature in Kelvin.  Figure 2.3 illustrates the behavior of 

black bodies at various temperatures.  Note the change in scale between figures 2.3 (a) and (b).  

What must be recognized is that in the region of the electromagnetic spectrum that NVIS 

operates, the sun’s radiation is the primary contributor.  The sun may be modeled as a black 

body with a temperature of 6000° K. (Elachi, 1987) 

 

Fig. 2.3 (a), (b) Spectral Emittance of Black Bodies of Various Temperatures (From Elachi, 
1987) 
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The maximum spectral emittance is at the wavelength: 

   m

a
T

λ =    (2-2) 

where a = 2898 µm°K.  Summing ( )S λ  over the entire spectrum gives a total emitted energy 

as described by the Stefan-Boltzman law: 

   4S Tσ=    (2-3) 

where σ = 5.669x10-8 Wm-2K-4.  These terms are important in that they define measurable 

characteristics of a black body and can be used to model the Sun.  It is important to note the 

wavelength of maximum spectral emittance because this defines the point of maximum energy 

radiated from the source.  The total emitted energy is important in that for instrument 

calibration purposes, the source lamp can be approximated as a black body of a certain 

temperature. 

Real bodies cannot exhibit the thermal energy conversion properties of a black body.  

To compare real or gray bodies, the concept of emissivity is used.  By definition, emissivity (ε) 

is the ratio between the emittance of a given object (M) and that of a black body of the same 

temperature (Mb): 

   
b

M
M

ε =    (2-4) 

The emissivity of a black body would therefore be 1, and that of a perfect reflector would be 0. 

(Campbell, 1996) 
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4. Interaction of Electromagnetic Waves With Matter 

Electromagnetic waves interact with matter through influencing the basic constituents 

of the matter.  The waves act on the electrons, molecules, and/or nuclei of the incident 

material, putting them in motion (rotation, vibration, or displacement). 

In the visible and near infrared, vibrational and electronic energy transitions play the 

key role.  In the case of solids the close proximity of the atoms in the crystalline structure leads 

to a wide variety of energy transfer phenomena with broad interaction bands. (Elachi, 1987)  

Each material has its own individual spectral signature, and this signature is used to identify 

materials in a scene. 

 

5. Detection of Electromagnetic Radiation 

The radiation reflected, scattered, or emitted from an object generates a radiant flux 

density surrounding the object which contains information about the object’s properties.  A 

collector and detector are used to capture and measure this radiation. 

In the Ultraviolet, Visible and Infrared regions, the collector is generally a lens or 

reflecting surface that concentrates the intercepted energy onto the detector.  By converting 

the incoming energy into another form of energy such as heat or electric current, the radiation 

can be detected. 
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B. SOLID SURFACE SENSING IN THE VISIBLE AND NEAR INFRARED 

The visible and near infrared spectral regions are the most commonly used in remote 

sensing of the Earth.  This is because the Sun is used as the major source of illumination and 

because sensors for these regions are the most widely available.  The sensor detects the 

radiation reflected off the surface and this is read as at-sensor radiance.  By comparing this 

radiance with the original incident radiation at the surface (which may be obtained by hand-

held spectrometers; this process is known as ground-truthing), the reflectivity can be 

determined.  This reflectivity is used to determine information about the materials in the 

detected surface and is independent of the incident radiation.  This is illustrated in figure 2.4. 

(Elachi, 1987) 

 

 

Fig. 2.4 Illustration of the Mechanics of Remote Sensing (From Elachi, 1987) 
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1. Spectral Characteristics of the Source 

The Sun is the most obvious choice to be the source of illumination for viewing in the 

visual and near infrared regions of the electromagnetic spectrum.  As a rough approximation, 

the Sun can be treated as a black body at a temperature of 6000° K.  The solar illumination 

spectral irradiance at the Earth’s surface is shown in figure 2.5.  The total irradiance is 

measured at about 1370 W/m2 above the Earth’s atmosphere. 

  

 

 

Fig. 2.5 Sun Illumination Spectral Irradiance at the Earth’s Surface (From Elachi, 1987) 
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2. Atmospheric Effects 

The atmosphere severely complicates accurate collection of remote sensing data.  

Because of this, the effect of the atmosphere must be accounted for when collecting 

information. 

The path of solar radiation from entry into the atmosphere, reflection off the target and 

thence into the collector is made complicated by atmospheric scattering.  The atmosphere 

serves to simultaneously attenuate the energy illuminating an object (and the energy reflecting 

off of it), while it also serves to reflect energy from other, non-targeted sources to the 

reflector.  This is illustrated in figure 2.6. 

   

 

Fig. 2.6 Atmospheric Effects Influencing the Measurement of Reflected Solar Energy (From 
Lillesand, 1994) 
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When both effects are expressed mathematically, the total energy observed by the 

detector may be expressed in terms of the reflectance of the target and the incident solar 

illumination.  This follows as: 

   TOT p

ET
L L

ρ
π

= +    (2-5) 

where LTOT is the total spectral radiance measured by the sensor, ρ is the reflectivity of the 

object, E the irradiance on the object, T the transmission of the atmosphere, and Lp the path 

radiance (reflected energy from the atmosphere.)  It must be recognized that each of these 

factors changes with wavelength. 

Because the regions of note are the visual and near-infrared, certain complications that 

are present in the thermal regions of the infrared may be ignored.  If a sensor is used that is 

sensitive to thermal infrared, the emittance of the target itself must also be considered.  Since 

the Earth’s surface generally exists at temperatures around 300°K it emits virtually no radiation 

in the visible and near-infrared portions of the spectrum, so self-emission may be ignored. 

The atmosphere of the planet preferentially absorbs portions of the emitted spectrum.  

The most prevalent constituents of the atmosphere that contribute to absorbing solar radiation 

are water vapor, carbon dioxide, and ozone. (Lillesand, 1994)  Because these gasses absorb in 

very specific regions of the electromagnetic spectrum, it drives the observer to look in other, 

non-absorbed regions.  The regions of the spectrum that have little absorption of solar 

radiation are generally referred to as atmospheric windows. 
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Scattering of solar radiation is caused by molecular density fluctuation, and all 

atmospheric constituents contribute to the effect.  The combined effect is computed as a 

function of atmospheric density and pressure.  The effect of gasses on the transmission of solar 

radiation is shown in figures. 2.7 a-f. 

In the visible spectrum, transmission is mainly affected by ozone and molecular 

scattering (figure 2.7, c, d).  Molecular scattering was first described by Rayleigh in 1871 and 

is known as Rayleigh scattering.  Its contribution to the vertical path transmittance (Tr) to 

space is expressed by optical thickness (τr): 

   r
rT e τ−=    (2-6) 

The Rayleigh optical thickness τr decreases as a function of wavelength (λ) as about λ-

4.  Since air density is proportional to pressure P, the vertical optical thickness between the top 

of the atmosphere and a certain level with pressure P can be given by: 

   0
0

( ) ( )r r
PP P Pτ τ=    (2-7) 

In the near IR region, a strong oxygen band can be seen at 0.76 µm (figure 2.7 c). 

Also, a few water vapor and carbon dioxide bands restrict the regions available for absorption 

free remote sensing.  Because of these bands, data taken in these specific ranges may not be 

useful in describing the area being sensed. 
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Fig. 2.7 Atmospheric Transmission for the Standard U.S. 1962 atmosphere computed by 
Lowtran code (Kneizys, 1983) for Sun at Zenith.  Attenuation due to: (a) water bands, (b) 
water continuum, (c) CO2, O2, and other minor absorbers, (d) molecular scattering, (e) ozone 
absorption, and (f) total transmission (From Asrar, 1989) 
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      The density of dry atmospheric gas, n(z), decreases as an exponential with respect to height 

z from sea level (z = 0): 

   ( ) (0)exp( )zn z n H
−=    (2-8) 

where H is the scale height of 8 km (Fraser, 1976).  Atmospheric pressure also decreases 

exponentially with respect to height, because it results from the integration of equation 2-8. 

(Asrar, 1989) 

Water vapor concentration is highly variable.  This variability results from the variation 

in water vapor sources (from evaporation) and losses (clouds/precipitation).  Carbon Dioxide 

is fairly stable throughout the atmosphere, except near large sources such as cities.  Ozone is 

generally restricted to the stratosphere (20-50 km above the surface of the Earth).  Figure 2.5 

illustrates the effect of the atmosphere on the incident solar illumination. 

Aerosols in the atmosphere must also be accounted for to accurately predict the effect 

of the atmosphere on solar radiation.  Aerosols refer to the liquid and solid matter suspended in 

the atmosphere.  To understand the effects of aerosols on remote sensing, one must understand 

the nature of the aerosol, which requires knowledge of its origin and how it was formulated.  

Because of this complexity, a model must be formulated to take into account effects from 

aerosols.  This model must take into account the geographic location and the season.  Cloud 

effects are similar to aerosol, however, in the visible and near infrared portions of the 

spectrum, clouds are highly reflective. 
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With regards to atmospheric effects, what must be understood is that these effects can 

be predicted and accounted for.  Instead of preventing remote sensing, the atmosphere just 

adds complications that can be overcome.  Also, because NVIS is an airborne platform vice a 

satellite, the effect is not quite as large, but it must still be accounted for. 

 

3. Wave-Surface Interactions 

How electromagnetic radiation interacts with a material affects the radiation 

subsequently reflected off the material.  The most basic description of these interactions 

includes reflection, transmission, and scattering.  Transmission of the radiation is not of 

concern, because this energy will not be detected by the sensor.  Scattering serves to 

complicate detection, because energy that comes from other, non-target sources may be 

detected by the sensor.  Direct reflection off the target is the simplest means of sensing the 

target. 

Reflection varies depending on the surface illuminated.  For a very smooth (λ >> 

interface roughness) specular reflection is preeminent.  However, most natural surfaces are 

rough relative to the visible wavelengths.  Scattering, therefore, plays a larger role.   

For a particulate surface, the incident wave is scattered and some of the incident 

radiation penetrates the particles.  Because of this, any absorption bands of the material deplete 

the radiation of energy in this band.  As the particles increase in size, these bands become even 

more pronounced 

The reflection of visible and near-infrared waves from natural surfaces occurs within 

the top few microns of said surface.  Therefore, surface cover plays a very important role.  For 
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example, the iron oxide in desert varnish (the topmost layer) can completely mask the spectrum 

of the material underneath (Elachi, 1987). 

 

4. Signature of Solid Surface Materials 

Solid surface materials can be classified as one of two types: geologic and biologic.  

Geologic materials obviously are soil and rocks.  Biologic corresponds to vegetation cover. 

In the visible and near-infrared regions, the signatures of geologic materials arise mainly 

due to electronic and vibrational transitions.  A spectral signature diagram for a variety of 

geological materials is illustrated in figure 2.8. 

The presence of chlorophyll in vegetation leads to a strong absorption of wavelengths 

shorter than 0.7 µm.  Between 0.7 and 1.3 µm, the strong reflectance is due to the refractive 

index continuity between air and the leaf cell. (Elachi, 1987)  Due to the dominant presence of 

water in vegetation, the spectral signature of plants looks virtually equivalent to the signature 

of water in the spectral region from 1.3 to 2.5 µm.  
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Fig. 2.8 Spectral Signature Diagram of a Variety of Geologic Materials (From Elachi, 1987) 
 

 

The differences between materials provide an opportunity to discriminate between them 

using their detected reflectivity.  Libraries of spectra have been collected for use in geology 

and agriculture (for detection of certain types of rock or vegetation.) 
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C. SPECTRAL DETECTORS 

Spectral detectors can be characterized by several different aspects of their design.  The 

region of the electromagnetic spectrum, the number of bands the detector collects, and the 

resolution of the spectral bands all serve to determine the spectral nature of a detector.  

Spatially, the ground resolution as defined by type of device and altitude can differentiate 

detectors.  Finally, the method used to collect information also differentiates detectors. 

 

1. Spectral Characteristics 

The region of the spectrum one wishes to observe defines various characteristics of the 

detector.  Detectors operating in regions of the spectrum that provide solar illumination or that 

can detect thermal emissions do not require an artificial illumination source.  Unfortunately, 

one aspect of detecting in the visual/near-infrared region is the requirement to have solar 

illumination, i.e. daylight is required. 

The number of bands detected defines what type of spectral detector is being used.  A 

multispectral detector would detect tens of bands, hyperspectral hundreds of bands, and 

ultraspectral thousands of bands, as defined by the Multispectral Users Guide, 1995, and 

illustrated in figure 2.9.  The resolution of the bands corresponds somewhat to the 
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Fig. 2.9 Classifications of Spectral Imagers (From Multispectral User’s Guide, 1995) 
 

number of bands studied.  The resolution defines the width of the section of the spectrum 

observed per spectral band.  As the number of bands increases (together with reducing the 

width of the spectral bins), the detail and granularity of the data collected increases.  This 

translates to picking up finer and finer spectral details of the scene being studied. 

 

2. Other Characteristics 

There are different methods that can be used to construct a spectral detector.  A 

common detector type and the type chosen for NVIS is the pushbroom imaging system.  In the 
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pushbroom detector, the forward motion of the detector provides for the view of the detector 

(figure. 2.10).   

 

 

Fig. 2.10 A Pushbroom Scanner (From Campbell, 1996) 
 

The geometry of the detector element itself defines the ‘footprint’ of the detector on the 

ground, so obviously this footprint will change in size as the altitude of the system changes.  

The pushbroom system has comparative advantages over other types, in that it provides longer 

dwell time over a given area and has no moving parts.  However, to give the detector a 

reasonable observed area, the detector element must be made wider than similar detectors.  
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This causes problems with distortion near the edges of the detector view.  Also, pushbroom 

detectors are limited in the swath width of the dimension of the spectral array. 
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III. NIGHT VISION IMAGING SPECTROMETER 
 
 
 

 The Night Vision Imaging Spectrometer (NVIS) is a hyperspectral imager designed and 

built by TRW as the TRWIS III.  It is an instrument with 384 contiguous spectral channels 

with bandwidths of 5.25 nm in the Visible/Near-Infrared (VNIR) (Folkman, Gleichauf, 1996) 

and 6.25 nm in the Short-wave Infrared (SWIR) regions respectively.  The 384 spectral 

channels are simultaneously collected from each pixel in the scene.  The entire wavelength 

range from 0.4 to 2.5 µm is covered at a signal to noise ratio of several hundred to one.  The 

instrument is calibrated at each wavelength to within 5% absolute radiometric accuracy.  It can 

operate on various aircraft or Unmanned Airborne Vehicles (UAV’s) (Folkman, DeLong, 

1996). 

 

Fig. 3.1 NVIS (From Simi, 2000) 
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A. SYSTEM DESIGN 

The instrument includes a sensor head containing a pair of co-boresighted grating 

spectrometers and two electronic racks.  The VNIR spectrometer covers the wavelength range 

from 370 to 1040 nm and the SWIR spectrometer ranges from 890 to 2450 nm.  The overlap 

between the two from 890 to 1040 nm allows verification of image co-registration and cross-

calibration (Folkman, Gleichauf, 1996).  Each spectrometer consists of a set of refractive 

foreoptics that image the scene onto a slit.  Light passes through the slit and is dispersed 

perpendicular to the slit by a flat grating.  The light is then imaged onto a two-dimensional 

focal plane array (FPA).  One dimension of the array, the dimension along the slit, provides 

spatial scene information.  The second dimension of the array, along which the light from any 

given point in the slit has been dispersed, provides spectral information.  Pushbrooming the 

image of the slit across the scene perpendicular to the slit and storing subsequent frames of 

information collected by the FPA’s generates a two-dimensional spatial image with 384 

spectral bands per pixel (Folkman, DeLong, 1996).  Simultaneous collection of the spatial and 

spectral information offers superior data to those instruments (such as AVIRIS) that collect the 

information separately, in that processing time is shortened and image quality is not as 

degraded (Folkman, Gleichauf, 1996). 

 The instrument is designed to interface with many aircraft.  The variable frame rate of 

the instrument (15, 30 or 60 Hz) allows for flight plans anywhere from 600 m to 12 km in 

altitude and covers the flight envelope of most aircraft in these altitude ranges.  The 0.85 mrad  
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instantaneous field of view (IFOV) of the instrument results in spatial resolution from 0.5 to 11 

m, depending on altitude.  The cross track field of view (FOV),  

 

Fig. 3.2 Aircraft Velocity and Altitude as a Function of Frame Rate and Ground Sample 
Distance (From Folkman, DeLong, 1996) 

 

meaning the range of view for the detector, ranges from 128 m to 2.8 km with the along track 

FOV limited only by the number of frames collected (Folkman, DeLong, 1996). 

 

B. OPTICAL/MECHANICAL DESIGN 

Both spectrometers are similar in optical configuration (see Appendix A).  Both have 

multi-element refractive foreoptics which image the scene onto the entrance slit of the 

spectrometer.  Light passes through the slit and is reflected by an off-axis aspheric element 

onto a flat, blazed grating where it is dispersed.  The reflected light from the grating is  
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reflected by a second off-axis aspheric element and imaged onto the FPA.  Refractive 

correction lenses are located at two places, behind the slit and in front of the FPA, to minimize 

field distortion.  If uncorrected this distortion would result in excessive spatial mis-registration 

of spectral channels and cross track spectral errors.  This type of error, also known as ‘smile’ 

will be explained in more detail in the following sections.  An order-sorting filter is located 

immediately above the surface of each FPA to eliminate order overlap (Folkman, DeLong, 

1996). 

The optics and FPA assemblies are secured in custom mounts that provide for precision 

adjustments when required for proper alignment.  An enclosure is attached to the baseplate to 

seal the optical system from the outside environment.  All mounts and interior surfaces are 

painted black to minimize stray light effects (Folkman, DeLong, 1996). 

 

C. FOCAL PLANE ARRAYS 

The focal plane module for the VNIR spectrometer is a custom silicon CCD made by 

Loral Fairchild Imaging Sensor.  The basic pixel size is 20 microns with an image area format 

of 768x384 pixels, spatially by spectrally, respectively.  When outputted, the pixels are binned 

3x3 resulting in an image array of 256x128 binned 60 micron pixels (Folkman, DeLong, 1996). 

The focal plane of the SWIR spectrometer is a custom Mercury Cadmium Telluride 

photodiode array and CMOS multiplexer hybrid made by Rockwell International.  The array 

has a format of 256x256 pixels, with each pixel being 60 microns square.  As the normal 

operating temperature is 115° Kelvin, the array is mounted in a Dewar and is cooled by a 

Stirling-cycle cooler.  Each pixel on the detector array is coupled to its own Capacitive Trans-
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Impedance Amplifier (CTIA) in the CMOS multiplexer and then coupled via switch FET’s to 

one of four output buffers in the device.  The hybrid is secured into a ceramic substrate that is 

mounted to the end of the cold finger inside the Dewar (Folkman, DeLong, 1996).  The 

detector is optimized from 900 to 2450 nm.  The cutoff at 2450 nm minimizes thermal 

background noise (Folkman, Gleichauf, 1996). 

  

D. CHARACTERIZATION MEASUREMENTS 

The various parameters of interest for the NVIS detector are collected in Table 3.1.  

The explanation of these parameters follows. 

 

 

Table 3.1.  NVIS Sensor Specifications (From Simi, 2000) 
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1. Modulation Transfer Function (MTF) 

A way to measure the performance of a detector so that it can be compared in an 

objective sense with other detectors is the Modulation Transfer Function (MTF).  To put it 

simply, the MTF is a measure of the magnitude response of a detector when looking at 

different spatial frequencies (Boreman, p.25).  A more rigorous description of MTF can be 

found in Asrar, 1989.  The results of the MTF tests for the VNIR and SWIR arrays are shown 

in figure 3.3. 
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Fig. 3.3 NVIS MTF Characterization (From Simi, 2000) 
 

2. Crosstrack Spectral Error 

The sensor artifact known as ‘smile’ is caused by distortion in the monochromatic 

image of the spectrometer slit onto the focal plane and/or by a rotation of the rows of focal 
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plane pixels relative to the slit.  This error was measured by imaging a monochromatic slit 

target onto a certain crosstrack pixel location.  The target was oriented perpendicular to the 

spectrometer slit, thus effectively creating a point target in the crosstrack axis which was 

insensitive to in-track motion. 

The source was positioned at one edge of the crosstrack field of view and the 

wavelength set to a specific value.  Then the target was moved across the field of view of the 

detector, stopping at the center of the field of view to readjust back to the desired wavelength.  

Then the target was moved to the opposite edge of the field of view of the detector.  The 

process was carried out for 475 nm, 700 nm, and 900 nm spectral channels for the VNIR, and 

953 nm, 1797 nm, and 2414 nm for the SWIR.  (Folkman, Sandor, 1997) 

The effect of poor smile characteristics would have an undesirable effect on 

classification algorithm performance.  Most striking, a homogeneous scene may be divided into 

several different classes if there is a large variation in band center assignment as a function of 

cross track pixel position.  Measurements indicate that the VNIR spectrometer’s smile effect 

appears to be mild, with band center variations of 0.3±  spectral pixels or 1.5 nanometers in the 

extreme case.  The SWIR system was found to have a more pronounced smile effect and this 

was determined to be caused by a slight rotation of the FPA.  This rotation shifts the band 

centers by approximately 1.3 spectral pixels as shown in figure 3.4.  This smile can be 

compensated for in post-processing calibration. (Simi, 2000) 
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Spectra of Atmospheric CO2 Taken From Left
and Right of Focal Plane

Fig. 3.4 Spectral Shift Due to Smile on SWIR FPA (From Simi, 2000)

3. Spatial Co-Registration of Spectral Channels

Spatial Co-Registration ensures that for a given spatial dimension, as the spectrum is

varied, the spatial dimension remains centered. A measure of this is how much the spatial

dimension varies as the spectrum is changed. To measure this, a procedure very similar to

that for measuring Spectral error is carried out, however, the target is fixed to center on the

spatial channel. Then the target wavelength is varied from its original value of 475 nm to

various other values for the VNIR and SWIR. The worst-case values for spatial co-

registration (at the edges of the focal arrays) were <20% of IFOV for both the VNIR and

SWIR. (Folkman, Sandor, 1997)
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4. Spectral Calibration and Spectral Purity 

Spectral Calibration was done during the Crosstrack Spectral Error measurements.  

Spectral calibration is simply a measure of the bandwidth of the spectral bins, whereas spectral 

purity measures the effect of spectral cross-talk.  This phenomenon is the result of energy that 

is directed to a certain spectral bin being detected by other bins, most likely those adjacent to 

it. 

Once the output wavelength of the target had been adjusted for a given spatial location, 

the center wavelength of the bin was recorded.  This was done at the various spatial locations 

of the target. (Folkman, Sandor, 1997)  From these measurements the spectral bandwidth was 

determined for the two instruments as 5.08 nm for the VNIR and 6.04 nm for the SWIR.  

(Simi, 2000) 

Once the exact wavelength had been set on the target, the signal in adjacent spectral 

channels was measured.  (The spectral bandwidth had been preset at predetermined values for 

the given wavelengths.)  The ratios of the signal on the adjacent spectral channels as well as 

those two and three pixels away to the total signal were calculated and are shown in figure3.5. 

(Folkman, Sandor, 1997) 
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Fig. 3.5 Monochromatic Source Images Showing Spectral Band Purity.  Each Pixel is 5.25 nm 
in Bandwidth (From Folkman, Gleichauf, 1996) 
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E. NVIS DATA CALIBRATION 

The raw data produced by NVIS must be calibrated prior to meaningful use.  Night 

Vision Laboratory has developed proprietary software to properly prepare the data for further 

calibration, e.g. manipulation by ENVI.  The software primarily consists of a processing tool 

and a viewer. 

The Hyperspectral Data Processor is a Windows based software package written in 

C.  It provides spectral processing capabilities that allow the conversion of the raw data 

captured by the NVIS detector to absolute radiance, as well as allow manipulation of the data 

set to provide a cleaner product.  Spectral processing capabilities also include background 

subtraction, spatial flat fielding, bad pixel replacement, smile correction, and removal of 

overlapping bands between the two spectrometers of NVIS. (Simi, 2000) 

A separate HSI viewer provides the added capability to view data-cube frames or 

images, plot spectra at selected points and produce histograms of specific areas.  Addition, 

subtraction, and division of frames can be performed.  The viewer specifically assists the user 

by allowing a view of the data-cube frame by frame.  By inspecting the cube in this fashion, the 

user can immediately see problems with calibration or header information in the data set. 



 37

IV. HYPERSPECTRAL DATA TOOLS 
 
 
 
Hyperspectral data provides many challenges to the user.  Compared to sensors in use 

before, the amount of data generated by hyperspectral sensors caused a search for tools that 

allow prodigious amounts of data to be interpreted.  A variety of tools provided by the 

software package ENVI will be evaluated in this thesis, so a review of the various operations is 

in order. 

 

A. RADIANCE TO REFLECTANCE CONVERSION 

While the data generated by the NVIS detector is in terms of radiance, the data is most 

easily used by the variety of classification algorithms if the data is in terms of the reflectance of 

the scene.  This removes problems associated with varying solar illumination on the scene. 

 

1. Empirical Line Calibration 

A method to convert radiance data to reflectance is to use information taken directly 

from ground measurements.  Field spectra must be acquired from the scene, preferably from at 

least two sources with albedos that span a wide range.  Next, pixels must be collected in the 

target data set that corresponds with the field spectra sources.  Then a linear regression is 

calculated for each band to determine the gains and offsets required to convert the radiance 

data to reflectance.  Finally, the data is multiplied by the gain factor and the offset is added to 

finish the conversion.  The result is the removal of atmospheric effects. (Kruse, Taranik, 1989)  

 



 38

2. Empirical In-Scene Calibration Method 

This method is also used to convert from at sensor radiance to reflectance.  For each 

band a histogram of all the pixels in the band is displayed (figure 4.1).  The path radiance is 

removed by adjusting the cutoff of the histogram associated with each band, such that the 

cutoff in at sensor radiance corresponds to a reflectance of zero.  The maximum is adjusted to 

remove any obvious noise in the figure.  To convert to reflectance, each pixel in the scene is 

divided by the range of the histogram with the new minimum and maximum values.  The 

overall effect is to remove the path radiance from the at sensor radiance, and then to convert 

this solar irradiance to reflectance. 

Path Radiance
Cutoff

 

Fig. 4.1 Histogram Illustrating EISC Method 
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B. PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis (PCA) is a very useful tool for the manipulation of 

hyperspectral data.  It can be used to discern a great deal of information about the data and the 

sensor.  By using PCA the number of dimensions required to represent the data can be 

reduced, based on measure of variability.  This is very useful in that manipulating the data is 

more easily accomplished in a data set of reduced dimensionality. 

As can be seen by figure 4.2, a comparison between bands in a hyperspectral data set 

generally will show a degree of correlation between the two bands.   

 

 

Fig. 4.2 Two-Band Histogram of Hyperspectral Data 
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That is, an increase in the value of one band is matched by a corresponding increase in the 

other band.  Uncorrelated data would have no corresponding increase.  A rotation of the plot 

can be performed such that the horizontal axis of the new plot lies along the direction of 

correlation between the two bands.  This rotation may provide a more revealing view of the 

data.  This rotation transformation is illustrated in figure 4.3.  The extension to higher 

dimensions is mathematically straightforward, if harder to visualize. 

 

Fig. 4.3 Illustration of a modified co-ordinate system in which the pixel vectors have 
uncorrelated components (From Richards, 1999) 
 

 

Mathematically, the principal components transformation, also known as Karhunen-

Loeve or the Hotelling transform, is an exercise in linear algebra.  The operation transforms the 

N bands of hyperspectral data into a set of uncorrelated principal component bands.  Each of 
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these bands is a linear combination of the original bands. (Mather, 1999)  The first principal 

component maximizes the variance of the original data, while the subsequent bands each 

maximize the remaining variance in projections that are perpendicular to the first dimensions.  

(Collins, 1996) 

By viewing each pixel point as a vector, the transformation rotation can be arrived at 

more stringently.  If in the new coordinate system the vectors are denoted as y, than a linear 

transformation operation G of the original coordinates x is desired, such that: 

   y=Gx   (4-1) 

where it is assumed that the covariance matrix of the pixel data in y space is diagonal.  The 

covariance matrix in y space, 
y∑ , can be identified as the diagonal matrix of eigenvalues of 

the covariance matrix in x space. (Richards, 1999) 
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N is the dimensionality of the data.  Since 
y∑ is by definition a diagonal covariance matrix, 

its elements are the variances of the pixel data in the transformed coordinates.  As previously 

noted, 1 2 Nλ λ λ> > >L , so the values are ordered in decreasing variance.  Because the 

maximum variance is in the direction of the first component, most of the information is 

contained in it, with decreasing amounts of information in the following principal components.  

The most obvious illustration of this is the higher degree of contrast in the first component 

compared to the second and lesser components, as seen in figures 4.4 (a-d).  These figures 
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were created from a standard data set provided in ENVI.  The data are from AVIRIS, and are 

a spectral subset from 1.99 to 2.48 µ.  The scene is the infamous Cuprite, Nevada area. 

 

Fig. 4.4 (a) Band One of sample PC Rotation 
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Fig. 4.4 (b) Band Three of sample PC Rotation 
 

 

Fig. 4.4 (c) Band Six of sample PC Rotation 
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Fig. 4.4 (d) Band Nine of sample PC Rotation 
 

The Principal Components Transformation provides early insight into complex data 

sets, but rarely is used to discriminate target elements.  Subsequent classification techniques 

must be applied, many of which depend on the reduced dimensionality of the data in PC-space. 

 

C. SUPERVISED CLASSIFICATION TECHNIQUES 

Supervised classification relies on a variety of algorithms to determine the types of 

materials present in a scene.  It is referred to as supervised because the user predetermines 

spectra or regions of interest from the scene, and the algorithm uses this information to classify 

the rest of the scene. 
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The essential steps to supervised classification techniques are: 

 

1. Decide upon the materials present in the scene that will be used by the algorithm to 

classify the scene, such as water, sand, etc. 

2. Select representative pixels from each of these material subsets.  These pixels form the 

training data.  It must be recognized that the number of training pixels for a given spectra must 

be equal to or greater than the total number of spectra chosen in the scene. 

3. Use the training data to estimate the parameters of the classifier algorithm.  The set of 

parameters for a given class is sometimes called the signature of the class. 

4. Using the classifier, classify each pixel in the scene into one of the desired types. 

5. Create summaries or class maps which summarize the results of the classification. 

1. Parallelepiped Classification 

The parallelepiped classifier is very simple in that the classifier is trained by inspecting 

scatter plots of the individual spectral components in the training data.  As shown in figure 4.5, 

a pixel will be characterized as containing a certain material if it is bounded by one of the 

parallelepipeds. 

For each of the classes specified, the user will specify a range expressed in terms of a 

number of standard deviations on either side of the mean of each feature.  This allows an 

estimation of the position of the boundaries of the parallelepipeds. (Maher, 1999) 
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Fig. 4.5 Parallelepiped Classifier in Two Dimensions.  Points Bounded by Parallelepipeds are 
Classified as Belonging to the Respective Classes, Points i, j are Unclassified. (From Mather, 
1999) 

Unfortunately, because of its simplicity several drawbacks are apparent.  Gaps are 

possible between parallelepipeds as seen in figure 4.5.  Pixels that fall outside of these regions 

will not be classified.  Also, as seen in figure 4.6, correlated data may cause an overlap, as the 

sides of the parallelepipeds are parallel to the spectral axes.  Thus some pixels will not be 

separated. (Richards, 1999) 
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Fig. 4.6 Parallelepiped Classification of Correlated Data Showing Regions of Inseparability 
(From Richards, 1999) 

 

2. Maximum Likelihood Classification 

Maximum likelihood classification is the most common supervised classification 

method used. (Richards, 1999)  The premise of this algorithm is that each pixel has a certain 

probability to be a given material, as defined by the material subsets chosen by the user.  The 

material that the pixel has the highest probability to be is selected, and the pixel is classified as 

being that material. 
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   ( ) ( )  if    for  all i i jx p x p x j iω ω ω∈ > ≠    (4-3) 

Unfortunately, the probability that a pixel is a certain material is unknown.  However, if 

enough training data is available, a probability distribution may be estimated that describes the 

chances of finding a pixel from material iω I at the position x .  This distribution will be 

denoted as ( )ip x ω .  There are as many ( )ip x ω  as there are material types as defined by the 

user. 

The desired ( )ip xω  and the available ( )ip x ω  are related by Bayes’ theorem. 

(Devore, 1995) 

   ( ) ( ) ( )
( )
i i

i

p x p
p x

p x

ω ω
ω =    (4-4) 

In this, ( )ip ω  is the probability that material iω occurs in the data set, and ( )p x  is the 

probability of finding a pixel from any class at location x .  The ( )ip ω  are referred to as a 

priori since they are the probabilities from which the material composition could be guessed 

before classification. 

Applying Bayes’ theorem to equation 4-3 it can be seen that the classification rule is 

now: 

   ( ) ( ) ( ) ( )j  if  p   for  all i i i jx p x p p x j iω ω ω ω ω∈ > ≠    (4-5) 

where ( )p x  has been removed because it is common to both sides of the inequality.  The 

classification rule is more acceptable in this form because the probabilities are known or can be 

inferred from the image.  Further, one can define the function 
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( ) ( )

( ) ( )
( ) ln

        ln ln
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p x p

ω ω

ω ω

 =  
= +

   (4-6) 

where ln is the natural logarithm, so that the classification rule becomes 

     if  ( ) ( )  for  all  i i jx g x g x j iω∈ > ≠    (4-7) 

where the ( )ig x  are now referred to as discriminant functions. (Richards, 1999)  By assuming 

that the probability distributions for the target classes are normal, the discriminant function is 

further simplified for use. 

The user may set threshold probabilities on the classification process, meaning that for 

a given pixel, if the largest probability that it is a certain target material is below a threshold 

value, the pixel remains unclassified.  This will do away with situations illustrated in figure 4.7 

a, b where the algorithm may classify a pixel incorrectly due to indeterminate probabilities. 

(Mather, 1999) 
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Fig. 4.7 a. Illustration of Poor Classification for Patterns Lying Near the Tails of the 
Distribution Functions of all Spectral Classes; b Use of a threshold to Remove Poor 
Classification (From Richards, 1999) 

 

3. Minimum Distance Classification 

The minimum distance classifier, or more correctly, the minimum distance to class 

means classifier, groups pixels by their distance from the various class means.  For a given 

pixel, the distance between it and the mean of the various spectral classes is calculated.  The 

material whose mean is closest to the target pixel determines the material of the pixel. 
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Useful because of its speed, minimum distance will classify all pixels in a scene.  Also, 

the minimum distance algorithm can be used when a large number of training pixels are not 

available for each class.  Other classifiers such as the maximum likelihood classification 

algorithm require a certain number of training pixels per class. (Richards, 1999) 

 

4. Mahalanobis Distance 

The Mahalanobis Distance algorithm is very similar to the maximum likelihood 

classifier.  It has elements of the minimum distance classifier, but the Mahalanobis distance 

classifier is a direction sensitive algorithm that uses statistics for each class.  Essentially, it is 

the maximum likelihood classifier with all class variance assumed to be equal.  Because of this 

simplification, it is a faster algorithm than the maximum likelihood classifier. (Richards, 1999) 

 

5. Spectral Angle Mapper 

The spectral angle mapper (SAM) allows mapping of the spectral similarity of spectra 

from a HSI data set to reference spectra.  The method assumes the data has been reduced to 

reflectance spectra, with dark current and path radiance removed. (Kruse, 1993)  The 

algorithm classifies pixels in the target scene according to the angle between the scene spectra 

and the reference spectra, viewing the spectra as vectors in N-dimensional space, with N as the 

number of spectral bands in the scene. 

Considering the simplified case of a two-band data set represented as a two-

dimensional plot (figure 4.8).  The lines connecting these two points and the origin contain all 

possible positions for that material, equivalent to the range in digital number for that material in 



 52

the scene.  The angle between the vectors is the same regardless of their length.  The SAM 

algorithm generalizes this concept to N-dimensional space. 

 

Fig. 4.8 Illustration of Spectral Angle Between Reference and Test Spectra (From Kruse, 
1993) 

 

The SAM determines the similarity of a given pixel spectra to a reference spectra by 

applying the following: 

   1cos
t r

t r
−

 ⋅ 
 ⋅ 

urr
r r    (4-8) 
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which can also be represented as: 
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   (4-9) 

where N = number of bands. 

Because the angle between the vectors is insensitive to the length of the vectors, this 

algorithm is unaffected by gain factors, such as brightness or topography.  This allows 

comparison between library spectra and the spectra of target pixels even with incomplete 

knowledge of the illumination characteristics of the target pixel spectra. (Kruse, 1993) 

The user can specify a threshold angle to prevent improbable classification of target 

pixels.  Much like user-specified variables in other supervised algorithms, if a target spectrum 

falls outside this threshold angle, the target will not be classified as the material.  If the target 

pixel falls outside the threshold angle of all materials, then the pixel will remain unclassified. 

6. Binary Encoding 

Binary spectral encoding algorithms are among the earliest attempts to deal with the 

incredible amount of information in HSI.  (The following description of the algorithm comes 

from Mazer, 1988).  To compare the pixels in a scene with training spectra, the algorithm 

converts each pixel to a vector of dimension N, the number of bands in the detector, 

   ( ) ( ) ( )1 , 2 , ,
T

ij ij ij ij Nχ χ χ χ =  
uur

L    (4-10) 
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where the indices ( ),i j  refer to the spatial location of the pixel in the scene.  Defining the 

spectral mean of pixel ( ),i j  as 

   ( )
1

1 N

ij ij
l

l
N

µ χ
=

 =   
∑    (4-11), 

one can then form an N-bit binary code vector a
ijY

ur
 by subtracting the mean from each pixel 

vector 

   { }a
ij ij ijY H χ µ= −

ur uur
   (4-12) 

where ( )H u  is the unit step operator defined by 

   ( ) 1,   0
0,   0

u
H u

u
≥

=  <
   (4-13) 

The vector constructed is a binary representation of the spectral amplitude.  Combined 

with a similar N-bit vector, b
ijU

ur
 (constructed from the local slope at each measured 

wavelength by the determination of the slope being positive or negative), 

   ( )
( ) ( )
( ) ( )

1,   1 1 0,
  1, 2, ,

0,   1 1 0,

ij ijb
ij

ij ij

l l
Y l l N

l l
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  + − − ≥  = =
 + − − <  

…    (4-14) 

the two vectors form a 2N-bit code vector ijY
uur

, which is the binary code word that represents 

the spectrum of pixel ( ),i j .  The similarity measure used to determine the pixel is the 

Hamming distance: 

   ( ) ( )( )
2

mn min
1

, ( )
N

h ij ij
l

D Y Y Y l XOR Y l
=

= ∑
uur uuur

   (4-15) 
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which is seen as just a 2N sum of bit-wise exclusive-or operations.  Since perfect matches are 

exceedingly rare with real data, allowance for natural variability is made by specifying a 

threshold distance of acceptance, d  such that 

   mn   if  ij hY Y D d≡ ≤
uur uuur

   (4-16) 

meaning that if the calculated Hamming distance is below the threshold value, then the pixel 

under scrutiny is of the material being compared to it.  When multiple training spectra are used, 

the minimum distance determines the identity of the material. (Mazer, 1988) 

 

7. Linear Spectral Unmixing 

In the linear mixing model all observed spectra are postulated to be linear combinations 

of a set of basic spectra.  The basic spectra, or endmember spectra, represent the spectrum that 

would be recorded for pure pixels.  Mixed spectra are modeled as weighted linear 

combinations of these basic spectra.  The weighting coefficients correspond to the apparent 

fractional surface coverage of that endmember in the scene.  These coefficients may sum to one 

at each pixel in a constrained solution, or the user may elect to perform an unconstrained 

analysis, meaning negative coefficients are not barred.  Spectral unmixing tries to differentiate 

the endmembers by inverting this procedure. One interesting note is that the number of 

endmembers must be less than the number of spectral bands.  This allows a typical HSI 

detector with bands that number in the hundreds to be able to differentiate a similar number of 

endmembers! 
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ENVI performs Linear Spectral Unmixing but the user must have some prior 

knowledge of the scene.  Training spectra are required for the algorithm to run. 

 

8. Matched Filtering and Mixture Tuned Matched FilteringTM 

Matched filtering performs a partial unmixing to find the abundances of endmembers 

defined by the user from training spectra.  It allows determination of the amount of a material 

in a scene with just the knowledge of that target spectra.  In other words, regardless of the 

other endmembers present, the algorithm can ‘look’ for the desired endmember. 

The operation of the matched filter algorithm reduces each pixel to a scalar that is a 

measure of the presence of the spectrum of interest.  The end result is to turn the hyperspectral 

data cube into a single image where pixels with high intensity indicate the presence of the 

desired signature.  The resultant image can then be thresholded and fed into a binary type 

classification algorithm to maximize the probability of detecting the signature of interest. 

(Harsanyi, 1994)  This operation applies just as effectively to an operation where several 

spectra are of interest. 

ENVI also provides an extension of the classic Matched Filter, the Mixture Tuned 

Matched Filter (MTMFTM).  It performs a match filter but also adds a measure of ‘Infeasibility’ 

to the results.  This is supposed to reduce the number of false positives that may arise from a 

conventional matched filtering.  Pixels with a high infeasibility will likely be matched filter false 

positives. 
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9. Spectral Feature FittingTM 

Spectral Feature Fitting (SFFTM) is an absorption feature based methodology for 

comparing the fit of image spectra to selected reference spectra using a least-squares 

technique.  After a continuum removal is performed on both the scene spectrum and the 

training spectra, the two spectra are compared at each selected wavelength in a least squares 

sense and the root mean square error is determined for each scene spectrum. (Crowley, 1992) 

 

D. UNSUPERVISED CLASSIFICATION TECHNIQUES 

Unsupervised classification differs from supervised in that the algorithm does not 

depend on inputs of reference spectra from the user.  While this may offer the advantage of not 

poring over data and establishing regions of interest and deriving training spectra, it does not 

allow the user to bring in information about the scene that may be useful. 

The K-means and ISODATA algorithms have been widely used as unsupervised 

training techniques. (Hung, 1992)   

 

1. K-means 

K-means clustering is a commonly used technique to segment large image regions into 

specific objects or areas of interest. (Chai, 1999)  The implemented algorithm takes as input 

the data-fused image to be analyzed and the number of clusters to be constructed (K).  First, all 

possible pixel clusters in the image are identified according to a particular threshold metric.  All  
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pixels that satisfy the threshold condition are grouped into M clusters based on a connectivity 

criterion. 

Once the centroids for the M (M>K) clusters are determined, the algorithm maps these 

clusters into K new clusters.  To do this, the algorithm chooses K clusters randomly out of the 

M original, and maps the remaining M-K clusters into these.  The centroids of these K clusters 

are denoted as seeds.  After the remaining clusters are mapped, the centroid of each of the 

newly expanded clusters is recalculated.  This newly recalculated centroid replaces the old as 

one of the K seeds.  The algorithm continues until no centroid changes cluster.  At the end, 

there will be K clusters that will hold the original M clusters.  Each of the K clusters will have 

a specific centroid calculated using all internal pixels.  Of important note is that the clusters 

generated will depend on the choice of seed points. (Chai, 1999)  Each cluster is then classified 

as an individual endmember 

2. ISODATA 

The ISODATA classifier, while considered by ENVI to be an unsupervised 

classification algorithm, is more accurately a hybrid of supervised and unsupervised techniques.  

As pointed out by (Campbell, 1996), it can be considered a variation of the minimum distance 

method, as described earlier. 

ISODATA starts with the training data selected as previously described, and these data 

can be envisioned as clusters in a multidimensional space.  All unassigned pixels are then 

assigned to the nearest cluster centroid.  Much as in K-means, the cluster centroids are then 

recalculated with the new pixels.  The process of allocating pixels to the closest centroid is 
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repeated if the centroid changes in position.  This continues until there is no change, or only a 

very small change, in class centroids from one iteration to the next. (Campbell, 1996) 

The main difference between K-means and ISODATA is ISODATA requires entry of 

training data by the user. (Tou, 1974)  Because of this, ISODATA does not have the 

susceptibility of the K-means algorithm to false local means because the algorithm is very 

dependent on initial seeds. 
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V. SPECTRAL ANALYSIS 
 
 
 
Data was collected on April 29, 2000 at Fort A.P. Hill in Virginia.  The NVIS detector 

was utilized in AP2K, an exercise performed at A.P. Hill from April 24-May 5.  For this 

exercise, a variety of targets were deployed in the exercise area, and a variety of sensors were 

flown over the targets.  Ground truthing of the various targets was performed, and spectral 

calibration panels were deployed to allow faithful calibration to reflectance of the data.  For 

this data set, NVIS was flown in NVL’s Twin Otter aircraft at 3000 ft., giving a resolution of 1 

meter. 

The figures that will be described in this chapter that are designated figure B.X are all 

presented in Appendix B.  

 

A. RADIANCE TO REFLECTANCE CONVERSION 

The data as obtained from NVL was in terms of radiance at the sensor (figure B.1).  

NVL had previously converted the raw data from at-sensor Digital Number (DN) to at sensor 

radiance by use of its Data Processing software. 

As discussed in Chapter II, radiance measures the Sun’s energy incident onto a surface.  

Because of this solar dependence, variations in illumination alter the signature of the surface.  

To remove the effect of the Sun, a conversion to reflectance is performed.  This gives spectra 

that are dependent on the material, not the illumination of the Sun (of course without 

illumination reflectance is undefined.) 
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As described before, in this thesis two methods for conversion from radiance to 

reflectance were used.  ELM was used to compare all the various classification and mapping 

algorithms.   

Ground truth reflectance for the calibration panels was provided by NVL (figure 5.1) 

and was converted into a spectral library.  The panel spectra were obtained directly from the 

data set and converted into another spectral library (figure 5.2).  These two libraries were used 

by ENVI to adjust the entire data set from radiance to reflectance.  The calibration coefficients 

are illustrated in figure 5.3. 

 

 

Fig. 5.1 Panel Ground Truth Reflectance 
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Fig 5.2 Panel Spectra from ROI’s 
 

To compare against ELM, an EISC calibration was performed and was demonstrated 

with one of the classification algorithms (SAM).  This allowed a comparison between the two 

calibration processes to ascertain if these processes create any sort of effect on the 

classification output.  The EISC coefficients are shown in figure 5.4. 

Originally, a third calibration procedure was going to be included.  This would have 

entailed using ATREM, a software package that can reduce radiance data to reflectance.  

However, ATREM requires the spectral resolution of the data to be at least 8 nm (ATREM, 
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1999).  As NVIS spectral resolution is better than this, ATREM could not be used on the 

NVIS data. 

 

Path Radiance x 20

Solar Irradiance

Empirical Line Method Calibration

 

Fig. 5.3 Empirical Line Method Coefficients 
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Empirical In-Scene Calibration

Path Radiance x 20

Solar Irradiance

 

Fig. 5.4 Empirical In-Scene Calibration Coefficients 
 

B. SPECTRAL AND SPATIAL SUBSETTING 

To remove any detrimental effects from problems with portions of the data, the data 

was thoroughly inspected for edge effects and other problems.  The edges of the data set 

(notably column one and columns 246-256) were essentially blank.  To ensure that the edges 

of the data would not interfere with any of the classification algorithms, the edges were 

excluded from the data set.  To remove the possible confusion in regions of the spectrum 

where atmospheric absorption was high, the bands that fell into these regions were excluded 
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(bands 200-208, 274-297, and 360-388.)  This removed the spectral regions 1.36-1.41µ, 1.81-

1.95µ, and 2.33-2.50µ respectively.  Lastly, to remove the overlap inherent in the NVIS design 

between the SWIR and VNIR, bands 117-134 were removed, which removes the last bands of 

the VNIR (0.97-1.03µ) and the first bands of the SWIR (0.93-0.96µ) without leaving a gap in 

the spectrum observed. 

 

C. DATA SET TRAINING 

A Principal Components transformation into 30 bands was performed on the radiance 

data.  This was done to allow working on a data set that has much lower dimensionality, 

thereby making operations on the data set easier to accomplish. 

Regions of interest were created by use of ENVI’s N-dimensional Visualizer, which 

attempts to picture the pixels of various bands as a rotated, two-dimensional image.  This 

allows the user to separate out pixels as groups that share common spectral characteristics   

After selecting various classes and exporting them back to the main image, the user can 

determine that the individual classes selected in the Visualizer were various items in the scene, 

such as vegetation, water, etc.   

The regions of interest initially created had a wide variety of materials included, as 

determined by the image.  When the Visualizer was run, a fairly obvious clump of pixels was 

separate from the rest of the pixels in the group (figure 5.5).  By exporting this new class back 

to the original scene, it was determined to be a target in the trees near the water.  This was 

later called target #1 (figure B.1). 
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Targets #2 and #3 (figure B.2) were located near the calibration panels and were not 

hidden in the trees in the scene.  The Visualizer was used to separate the spectra of these 

targets from the surrounding area, by choosing a smaller region of interest that included these 

targets and the calibration panels.  When this was done, the spectra of the two targets were 

distinct from the rest of the spectra in the region, and the new target spectra were exported to 

the original scene. 



 68

 

Road

Target #1

Water

Vegetation Classes

 

Fig. 5.5 Illustration of Using N-Dimensional Visualizer to Separate Spectral Classes 
 

Target #4 was found by the user while looking at a false color image of the data set 

(figure B.1).  As with targets #2 and #3, a small region of interest was created that included 

the new target as well as surrounding background materials.  Again, the spectrum of the new 
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target was distinct from the spectra of nearby pixels, and this new target was exported back to 

the original scene. 

The classes that were determined in this data set are shown in table 5.1. 

 

 Classes Color 
   

1 Interesting target Purple 
2 Another Target Orchid 
3 Target near Panels Sienna 
4 Target near Water Aquamarine 
5 Black Panel Black 
6 Red Panel Red 
7 Yellow Panel Yellow 
8 Grass Green 
9 Dark Bushes Chartreuse 
10 Bright Trees Magenta 
11 Bright Trees2 Coral 
12 Water Blue 
13 Road Maroon 
14 Dirty Water Sea Green 

 
Table 5.1 List of Training Classes 

 

 

 

Once these classes were determined and quantified, they were used by the various 

supervised classification algorithms in ENVI to classify or map the data set. 

A second classification image was created, using the first ten bands of the PC 

transform.  This was done to allow the Maximum Likelihood and Mahalanobis distance 

algorithms to be performed.  This was necessary for these algorithms because the number of 

training examples (pixels) must be more than the number of spectral bands in the data set.  
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Given the limited number of pixels on the targets, this ruled out the chance to use the full data 

set.  The same regions of interest were imported into this ten-band set to perform the 

algorithms. 

 

D. SUPERVISED CLASSIFICATION ALGORITHMS 

1. Spectral Angle Mapper 

a. Empirical Line Method 

The Spectral Angle Mapper algorithm was applied to the ELM reflectance data.  

The angular separation allowed was varied from 0.1 radians to 0.5 radians. As can be seen 

from the images, SAM does a fairly good job of breaking out the obvious targets, such as the 

calibration panels.  From figures B.2 and B.3, one can see the emergence of the vegetation 

classes and the calibration pixels, as well as the differentiation of the two water classes as the 

separation angle is opened from 0.1 radians to 0.2 radians.  As an example, figure B.4 shows 

the red calibration panel rule image.  As can be seen in the gray-scale figure, the panel pixels 

were classified with an angle of 0.05 radians. 

However, from the rule images, the targets of interest are not well broken out, 

if at all, except for Target #1.  As can be seen from its rule image (figure B.5), target #1 was 

easily recognizable and was well classified in the scene.  Interestingly, the target required a 

separation angle of 0.4 before it was classified, but it was markedly different than the rest of 

the spectra in the scene.  Target #2 was not classified at all (figure B.6).  As can be seen in the 

figure, a large portion of the scene was classified as target #2.  Target #3 was classified, but a 

portion of the background was also classified as target #3, however to a lesser extent (figure 
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B.7).  Target #4 was not considered classified.  While the target was classified, enough of the 

background was also included such that differentiation from background was not possible 

(figure B.8). 

 

b. Empirical In-Scene Calibration 

The spectral angle mapper was also performed on the EISC data, to function as 

a check to determine if the choice of radiance to reflectance calibration mattered on the 

classification of the targets. 

The similarities between the mapping images of the ELM and EISC outputs are 

not surprising (figures B.9, B.10).  One striking difference is the larger differentiation angle 

required to classify the same object.  The water area is a prime example.  In the ELM set, the 

water is well classified at 0.2 radians, whereas in the EISC data set, the water is not well 

classified until 0.5 radians. 

Much as was found in the ELM data, a SAM performed on the EISC data 

broke out target #1 (figure B.11).  Interestingly, the target again required a large angle (0.4 

radians) of separation to be differentiated.  Again, the target was drastically different from the 

rest of the scene. 

Target #2 was confused with much of the background in the scene.  This was 

precisely the result derived in the ELM data for target #2 (figure B.12). 

Target #3 was differentiated from background (figure B.13).  As was found in 

the ELM data, much of the background was classified as target #3, but the target itself 

required a much smaller angle to be differentiated. 
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Target #4 was again not differentiated from background.  However, in the 

EISC case, very little of the background was mistakenly classified as target #4 (figure B.14) 

 

2. Parallelepiped 

The parallelepiped algorithm was performed on the ELM reflectance data.  The 

algorithm allows the classes to be discriminated in terms of the width, measured in standard 

deviations, of an n-dimensional rectangle.  As can be seen from figures B.15 and B.16, the 

mapping characteristics of this algorithm leave much to be desired.  While the more obvious 

classes like the calibration panels as well as one of the more significant targets were mapped 

(target #1), the algorithm appeared confused by the majority of the background.   

This algorithm showed a striking ability to classify target #1.  As seen in the rule image 

for target #1 (figure B.17), this object’s difference from the background makes it a fairly 

obvious non-background target, however, there does seem to be some confusion regarding 

nearby pixels in the water that are misclassified as target #1. 

Much of the entire scene was classified as target #2.  This is very apparent when 

looking at the rule image for target #2 (figure B.18).  It is interesting that target #2 is actually 

well differentiated compared to the surrounding area, yet the algorithm classifies a large 

portion of the forest background as target #2. 

Target #3 (figure B.19) was correctly classified by the algorithm.  As seen in its rule 

image, the target is easily differentiated from the background. 
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Target #4 (figure B.20) was not differentiated against much of the background.  To a 

lesser degree than target #2, a significant portion of the forest background was classified as 

target #4. 

 

3. Binary Encoding 

This method was the most successful at mapping vegetation while at the same time did 

a fair job of target discrimination from background.  However, this algorithm was not as 

successful as the others in breaking out even the more obvious targets like the calibration 

panels at high levels of probability.  As can be seen in figures B.21 and B.22, as the level of 

probability required increases, the obvious targets disappear from view, leaving just scattered 

vegetation and water. 

Target #1 broke out at over a 90% degree of certainty (figure B.23).  Much as the 

other algorithms, binary encoding did a fair job of differentiating this target from the 

background.  However, as can be seen in figures B.24 and B.25, this algorithm had particular 

difficulty in separating targets #2 and #3.  Target #2 was confused with the vast majority of the 

scene.  As seen in the histogram in figure B.24, most of the pixels in the scene were classified 

as target #2 with at least a 90% degree of certainty. 

Target #3 shows a similar result.  However, as can be seen in its rule image, target #3 

itself was classified to less certainty than much of the surrounding background. 

Target #4 is not differentiable from background unless the histogram and enlarged 

picture of the target are checked (figure B.26).  The histogram shows a sharp drop above 85% 
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certainty, with a small number of pixels at 90%.  When checking the image, it is apparent that 

the small number of pixels that are classified at 90% are associated with target #4. 

 

4. Minimum Distance 

The results for the minimum distance algorithm were very similar to the binary 

encoding.  When forced to classify the entire scene, the algorithm looked like it provided 

accurate results (figures B.27, B.28).  This algorithm was the most accurate in classifying the 

water as definitely having two distinct classifiable areas.  However, when the individual rule 

images were observed, a very different portrayal of the scene was evident. 

As before, target #1 stood out from the rest of the scene remarkably well (figure B.29).  

Also as noted, the water in the scene was characterized as having two distinct characters 

(denoted ‘water’ and ‘dirty water’ in the class list.)  When the rule images for the other three 

targets of interest were observed, the images did not provide any indication of separation from 

background.  Targets #2 and #3 were not recognizable from the background without prior 

knowledge of their existence (figures B.30, B.31).  Because the targets are physically 

separated from the trees in the scene, it appears as if they are differentiated.  However, it is 

made apparent by checking the gray scales and histograms for the two targets that if they were 

hidden in the trees, they would not be differentiated. 

 The same is true for Target #4 to a lesser extent.  While the algorithm excluded much 

of the background, it did not show any distinction between the target and the small amount of 

background that was apparent in the image (figure B.30). 
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5. Mahalanobis Distance 

As stated previously, this algorithm was performed on a 10 band PC rotation set of the 

original radiance data.  The mapping images (figures B.33, B.34) show this algorithm was 

successful at breaking out the panels and the water.  With regards to the four targets, however, 

the rule images must be observed because of the subtlety of the target differentiation is not 

apparent in the mapping images. 

Target #1 was differentiated fairly well from the background (figure B.35).  While it 

may be noted that a number of background pixels were also classified as this target, the 

difference between these few pixels and the target is large and noticeable.   

More so than with many of the other algorithms, target #2 was differentiated from the 

rest of background.  While fairly subtle, the target is nevertheless apparent (figure B.36). 

Target #3 also was well differentiated (figure B.37), however not so obviously as target 

#1.  While it was obvious from the figure that a significant portion of the scene was remarkably 

similar to target #3, the target itself was easily seen. 

Target #4 was not differentiated from background (figure B.38).  While the majority of 

the background was excluded, so much of the background was included in the rule diagram 

that the location of the target is not at all apparent. 
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6. Maximum Likelihood 

As with Mahalanobis distance, this algorithm was performed on a 10 band Principal 

Component set of the radiance data.  By noting the mapping images (figures B.39, B.40), one 

can immediately see that the two water classes and the panels are obvious to the viewer, as 

well as target #1.  Consequently, it is not surprising that the algorithm broke out target #1 very 

well (figure B.41). 

Targets #2 and #3 were not differentiated from background at all.  As apparent from 

the rule images, #2 was confused with much of the grass in the scene (figure B.42).  #3 on the 

other hand was confused with much of the road and grass in the scene (figure B.43).  Unlike 

the other targets, the histograms for #2 and #3 exhibited the characteristics of a ‘smile’ in that 

while a large portion of the scene was given a likelihood of 0 (in a scale from 0 to 1), much of 

the rest of the scene was given a likelihood of 1.0. 

Target #4 was relatively well broken out from the background of the scene (figure 

B.42).  While some background pixels were classified as well, the contrast from the rest of the 

scene was sufficient to differentiate the class from the rest of the classified pixels. 

 

7. Linear Spectral Unmixing 

This algorithm adds a level of complexity to the results.  Not only are rule images 

produced as output, but the algorithm also creates an error image, which can be used to judge 

how accurately a classification is made.  The algorithm can be run with or without a unit sum 

constraint.  It was not apparent that there was a noticeable difference between the two by the 

author. 
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Looking at the error image (figure B.45) where large error is dark, it is apparent that 

the majority of the error exists on the boundaries between groups of vegetation, as well as 

around the water.  With that in mind, it must be noted that for the individual rule images, if an 

image denotes a positive target classification, and this is coupled with a high error, than the 

classification is in doubt.  In these cases, there were no apparent instances of a target being 

incorrectly classified, whereas three of the four targets were not differentiated from 

background. 

Unlike the other algorithms, this algorithm was unsuccessful at differentiating target #1 

from the background (figure B.46).  As apparent in the rule image, the target blends in with the 

background completely.  Target #2 was also inseparable from the background (figure B.47), in 

that there was no means to differentiate the target from the rest of the scene. 

Target #3 was separated from the background very well (figure B.48).  The contrast 

between the target and the rest of the scene was remarkable, and left no question as to the 

presence of the target. 

The rule image for target #4 (figure B.49) was very similar to that of target #1, in that 

the target was completely indistinguishable from the rest of the scene. 
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8. Matched Filter 

The Matched Filter outputs rules images that, as a function of brightness, denote pixels 

that the algorithm has classified as the target pixel.  There is no indication of error as there is in 

MTMFTM. 

The Matched Filter broke out target #1 easily from the background (figure B.50).  

However, the algorithm classified a significant portion of the water’s edge as well.  

Unfortunately, this casts doubt on the validity of the classification. Also, target #1 was broken 

out to varying degrees in all of the other three target rule images. 

The algorithm differentiated target #2 (figure B.51).  Unfortunately, when performing 

this classification, target #3 was also included in the classification, and target #1 to a much 

lesser extent.  When actually performing the classification for target #3 (figure B.52), it was 

again well differentiated.  Unfortunately, targets #1 and #3 were also broken out when 

classifying target #4 (figure B.53).  As no amount of error is able to be determined, there is no 

justification as to whether a classification is correct or not, so the inclusion of target #3 in all of 

these other classifications brought much confusion to the results. 

 

9. MTMFTM 

The MTMFTM algorithm output was very similar to the Matched Filter; however, it also 

includes a measure of ‘infeasibility’ to allow a means to differentiate between positive matches 

in a rule image.  To generate the rule images, the classification images were divided by the 

infeasibility.  Therefore, if a pixel had a high probability and a low infeasibility, it would output 

a high MTMFTM value. 
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Target #1 shows up very plainly in its rule image (figure B.54).  When observing the 

infeasibility image it is also notable that except for a few other pixels (some of which belong to 

target #4) the pixels that are classified as target #1 are the only feasible pixels in the scene.  

This gives a good indication that the pixels classified as target #1 are actually target #1. 

Targets #2 and #3 were also differentiated from background (figures B.55, B.56).  

Interestingly, a sort of sensor artifact is evident in the rule image for target #2 that was not 

plain in any of the other rule images.  This can be seen as the line of feasible pixels that 

vertically intersects the image above target #2. 

Target #4 gave an interesting result that was not reproduced in the other algorithms.  

Target #4 was classified and deemed feasible, but target #1 was also included, reducing the 

effectiveness of this algorithm to differentiate target #4 (figure B.57).  Also, the algorithm 

classified a number of pixels as target #4 in a shadowy region in the data set that it also 

described as having high feasibility.  Whether this is a true false alarm or another target is not 

easily determined, as this detection did not evidence itself in the other algorithms. 

 

10. Spectral Feature Fitting 

Much like MTMFTM and Linear Spectral Unmixing, SFF provides a rule image as well 

as a measure of error.  As was done with the MTMFTM algorithm, the rule image was divided 

by the RMS error image to provide a better picture of what the algorithm considers to be 

classified as a target. 

The algorithm again characterized target #1 quite easily (figure B.58).  However, the 

other targets were all classified by lesser and varying degrees of success.  The algorithm was 
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completely unsuccessful at breaking out target #2 (figure B.59).  So much background was 

included that even given the position of target #2, it is not possible to differentiate the target 

from all the background pixels.   

Much like target #2, a large portion of the background was included in the classifier for 

target #3 (figure B.60).  However in this case, the background actually shows as more of a 

definitive match due to its darker presentation.  Target #4 was classified, but enough 

background pixels were included to introduce confusion in classification (figure B.61).  

However, due to the darkness of the classification image, the target was definitely broken out. 

 

E. UNSUPERVISED MAPPING ALGORITHMS 

While the proceeding algorithms attempted to classify the pixels in the scene according 

to training spectra, these algorithms broke the scene up into as many endmembers as the user 

specified. 

For both algorithms, a varying number of endmembers were specified, meaning the 

algorithm attempted to find that many individual endmembers in the scene.  This was done to 

explore the capabilities of the algorithms to differentiate the endmembers. 
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1. K-Means 

The K-Means algorithm did not adequately differentiate the four targets of interest 

from the background.  While the calibration panels were usually separated, the targets were 

misclassified, generally the same as water. 

For the five-endmember case (figure B.62), as expected the scene was broken down 

into a combined shadow and water class and the four classes that covered the rest of the scene.  

Because the algorithm was so limited, it was of no real use to attempt to differentiate between 

the targets in the scene. 

For the ten and sixteen endmember cases though (figures B.63, B.64), sufficient 

endmembers were available to break out some of the variation in the scene.  However, due to 

the nature of the algorithm, even the calibration panels were classified as belonging to classes 

that from the picture were vegetation classes or water.  The same was definitely true with the 

targets of interest.  Interestingly, the most striking target, target #1, showed up as belonging to 

the water class from the mapping results.  Because of these findings, it was not shown that the 

K-Means test is a useful one for distinguishing targets in this data set. 

 

2. ISODATA 

The results from the ISODATA algorithm were much the same as from the K-Means, 

which, owing to the similarity between the algorithms, is not surprising.  For the 5-endmember 

scenario (figure B.65) there was not enough granularity available for the algorithm to 

differentiate any of the interesting targets. 
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While some of the targets were apparent in the ten and sixteen endmember results 

(figures B.66, B.67), without prior knowledge of the location of the targets, the inclusion of 

the targets in such classifications as a water or vegetation class would confuse the 

differentiation process.  As can be seen in these results, target #1 again is classified the same as 

the water class, while the other targets are variants of vegetation classes. 

As the results for both the K-Means and ISODATA are similar, it may be inferred that 

perhaps a non-supervised mode of classification is not sufficient to differentiate targets in a 

wooded, camouflaged environment.  However, if the possible number of differentiable 

endmembers were increased, the required granularity may be achieved.  ENVI allows more 

than sixteen endmembers to be differentiated.  However, it only supports up to sixteen 

mapping colors.  Consequently, if the algorithm was run to search for more than sixteen 

endmembers, a repetition of colors would result.  This leads to confusing classification and a 

less meaningful image. 



 83

F. SUMMARY 

The performance of the various algorithms in differentiating the four targets of interest 

is summarized in the following table (5.2). 

 Target #1 Target #2 Target #3 Target #4 

ELM     

SAM Yes No Yes No 

Parallelepiped1 Yes No Yes No 

Binary Encoding2 Yes No No Yes 

Minimum Distance Yes No No No 

Mahalanobis Distance Yes Yes Yes No 

Maximum Likelihood Yes No No Yes 

Linear Spectral Unmixing No No Yes No 

Matched Filter3, 4 Yes5 No Yes No 

MTMFTM Yes Yes Yes No6 

Spectral Feature Fitting Yes No No Yes 

K-Means No No No No 

ISODATA No No No No 

     

EISC     

SAM Yes No Yes No 

     

Yes = Target differentiated from background   

No = Target not differentiated    
Notes: 

1 – Large portion of the scene was classified as Target #2 
2 – Most successful at mapping vegetation 
3 – Target #1 was classified in all four of the rule images 
4 – Target #3 was classified in the rule images for target #2 and #4 
5 – Portion of the water class was also classified as target #1 
6 – Target #1 was also classified and considered feasible by the algorithm 
 

Table 5.2 Summary of Algorithm Results 
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VI. CONCLUSION 
 
 
 
In this thesis a comparison of the classification algorithms provided by ENVI was 

performed.  A data set collected by use of the Night Vision Imaging Spectrometer was 

analyzed.  This also allowed a determination of the usefulness of NVIS to differentiate targets 

in a scene, specifically targets that are in varying degrees of concealment.  The  algorithms 

were performed on the data, and differences in the output of the algorithms were noted. 

The main measure of performance that was observed was the ability of the algorithm to 

differentiate four targets of interest from the rest of the scene.  While terrain categorization is 

also a performance parameter, no marked differences  between the algorithms were observed.  

The algorithms all were able to distinguish the water from the differing types of vegetation.  In 

fact, the varying types of trees and grass were also classified.  However, due to the methods 

used in this thesis, the most useful object of this work is the ability of the algorithms combined 

with ENVI to differentiate targets from background. 

As opposed to other work done in the field of HSI, no ground truth spectra were used 

to differentiate targets from background.  Ground truth spectra were used only to perform a 

calibration from radiance to reflectance.  Because ground truth spectra were not used to 

classify, this gives a more realistic real-world evaluation of these classification algorithms.  If 

these algorithms were to be used to meet military needs, the capability to act without prior 

knowledge of the targets in the scene is vital. 
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The perfect classifier for military use would be the type that requires no input from the 

user.  This would of course mean an unsupervised classification algorithm.  Unfortunately 

these types of algorithms require a fairly large amount of computing power, as well as being 

lengthy in time.  This is not conducive to a military use.  Because of this, at the current stage of 

development, supervised classification algorithms are more appropriate for use.  The downside 

to this is that some means to differentiate spectra, as was done in this thesis using ENVI’s N-

dimensional Visualizer, must be performed by the user.  This is unfortunate in that any 

inaccuracies introduced by the user, such as poor spectral differentiation, will be carried 

forward by the algorithm, degrading its results. 

In this thesis, the most successful algorithms in differentiating the four targets of 

interest were Mahalanobis Distance and the Mixture Tuned Match FilterTM.  Unfortunately, 

neither of these algorithms was able to classify all four of the targets of interest.  Neither of the 

two algorithms was able to differentiate target #4.  MTMFTM actually did classify target #4, 

but it also included target #1 in its classification, leading to confusion between the targets.  

With regards to truly differentiating target #4, only three algorithms were able to do this.  They 

were Binary Encoding, Maximum Likelihood, and Spectral Feature Fitting. 

MTMFTM was the best of the algorithms in differentiating the targets in this data set.  

While it could not classify target #4 without also including target #1, nevertheless target #4 

was classified.  This was not the case for Mahalanobis Distance. 

NVIS has been shown to be useful in differentiating targets in a CCD setting, as well as 

performing TERCAT.  Modern military operations require the type and quality of information 

provided by NVIS, and it is hoped that further investigation of its properties will be performed.  
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However, a more accurate algorithm or combination of algorithms must be discovered and 

applied to NVIS such that accurate, timely differentiation of targets from background can be 

performed, and this information disseminated to the user. 
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APPENDIX A.  NVIS LINE DRAWINGS 

 

Fig. A.1 Layout of the SWIR Spectrometer (After Folkman, DeLong, 1996) 
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Fig. A.2 Layout of the VNIR Spectrometer (After Folkman, DeLong, 1996) 
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APPENDIX B.  CLASSIFICATION IMAGES

 

 

 

 

 

 

 

 

Fig. B.1 False Color Image of the Scene, Illustrating Targets of Interest 

Target #1 

Target #4 

Target #3 
Target #2 

Calibration 
Panels 
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        0.1 Radians      0.2 Radians 

Fig. B.2 ELM SAM Mapping Output for 0.1 and 0.2 Radians 
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      0.3 Radians             0.5 Radians 

Fig. B.3 ELM SAM Mapping Output for 0.3 and 0.5 Radians 
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Fig. B.4 ELM SAM Rule Image for Red Panel 
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Fig. B.5 ELM SAM Rule Image for Target #1 
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Fig. B.6 ELM SAM Rule Image for Target #2 
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Fig. B.7 ELM SAM Rule Image for Target #3 
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Fig. B.8 ELM SAM Rule Image for Target #4 
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         0.1 Radians      0.2 Radians 

Fig. B.9 EISC SAM Mapping Output for 0.1 and 0.2 Radians 
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         0.3 Radians      0.5 Radians 

Fig. B.10 EISC SAM Mapping Output for 0.3 and 0.5 Radians 
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Fig. B.11 EISC SAM Rule Image for Target #1 
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Fig. B.12 ELM SAM Rule Image for Target #2 
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Fig. B.13 EISC SAM Rule Image for Target #3 
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Fig. B.14 EISC SAM Rule Image for Target #4 
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      1.5 Std Dev      2.0 Std Dev 

Fig. B.15 Parallelepiped Mapping Output for 1.5 and 2.0 Std Dev 
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      3.0 Std Dev      4.0 Std Dev 

Fig. B.16 Parallelepiped Mapping Output for 3.0 and 4.0 Std Dev 
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Fig. B.17 Parallelepiped Rule Image for Target #1 
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Fig. B.18 Parallelepiped Rule Image for Target #2 
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Fig. B.19 Parallelepiped Rule Image for Target #3 
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Fig. B.20 Parallelepiped Rule Image for Target #4 
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50%          90% 

Fig. B.21 Binary Encoding Mapping Output for 50% and 90% Certainty 
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95%          99% 

Fig. B.22 Binary Encoding Mapping Output for 95% and 99% Certainty 
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Fig. B.23 Binary Encoding Rule Image for Target #1 
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Fig. B.24 Binary Encoding Rule Image for Target #2 
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Fig. B.25 Binary Encoding Rule Image for Target #3 
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Fig. B.26 Binary Encoding Rule Image for Target #4 
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0.2 DN       0.5 DN 

Fig. B.27 Minimum Distance Mapping Output for 0.2 and 0.5 DN 
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1 DN                Full Scene 

Fig. B.28 Minimum Distance Mapping Output for 1 DN and Full Scene Mapping 
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Fig. B.29 Minimum Distance Rule Image for Target #1 
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Fig. B.30 Minimum Distance Rule Image for Target #2 
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Fig. B.31 Minimum Distance Rule Image for Target #3 
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Fig. B.32 Minimum Distance Rule Image for Target #4 
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10 DN       20 DN 

Fig. B.33 Mahalanobis Distance Mapping Output for 10 and 20 DN 
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25 DN       50 DN 

Fig. B.34 Mahalanobis Distance Mapping Output for 25 and 50 DN 



 125

 

Fig. B.35 Mahalanobis Distance Rule Image for Target #1 
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Fig. B.36 Mahalanobis Distance Rule Image for Target #2 



 127

 

Fig. B.37 Mahalanobis Distance Rule Image for Target #3 
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Fig. B.38 Mahalanobis Distance Rule Image for Target #4 
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Full Image           90% 

Fig. B.39 Maximum Likelihood Mapping Output for Full Image and 90% Certainty 
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   99%       99.99% 

Fig. B.40 Maximum Likelihood Mapping Output for 99% and 99.99% Certainty 
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Fig. B.41 Maximum Likelihood Rule Image for Target #1 
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Fig. B.42 Maximum Likelihood Rule Image for Target #2 
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Fig. B.43 Maximum Likelihood Rule Image for Target #3 
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Fig. B.44 Maximum Likelihood Rule Image for Target #4 
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Fig. B.45 Linear Spectral Unmixing Error Output 
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Fig. B.46 Linear Spectral Unmixing Rule Image for Target #1 
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Fig. B.47 Linear Spectral Unmixing Rule Image for Target #2 
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Fig. B.48 Linear Spectral Unmixing Rule Image for Target #3 



 139

 

Fig. B.49 Linear Spectral Unmixing Rule Image for Target #4 
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Fig. B.50 Matched Filter Rule Image for Target #1 
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Fig. B.51 Matched Filter Rule Image for Target #2 
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Fig. B.52 Matched Filter Rule Image for Target #3 
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Fig. B.53 Matched Filter Rule Image for Target #4 
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Fig. B.54 MTMFTM Rule Image for Target #1 
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Fig. B.55 MTMFTM Rule Image for Target #2 
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Fig. B.56 MTMFTM Rule Image for Target #3 
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Fig. B.57 MTMFTM Rule Image for Target #4 
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Fig. B.58 Spectral Feature Fitting Rule Image for Target #1 
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Fig. B.59 Spectral Feature Fitting Rule Image for Target #2 
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Fig. B.60 Spectral Feature Fitting Rule Image for Target #3 
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Fig. B.61 Spectral Feature Fitting Rule Image for Target #4 
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Fig. B.62 K Means Mapping Image for 
Five Endmembers 

 

Fig. B.63 K Means Mapping Image for 
Ten Endmembers 
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Fig. B.64 K Means Mapping Image for Sixteen Endmembers 
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Fig. B.65 ISODATA Mapping Image for 
Five Endmembers 

 

Fig. B.66 ISODATA Mapping Image for 
Ten Endmembers 
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Fig. B.67 ISODATA Mapping Image for Sixteen Endmembers 
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